Β Β Some of the basic formula for fluid mechanics which can help in competitive exam.
- π=π.ππ£ππ¦
- ππππ‘+πππ₯(ππ£π₯)+πππ¦(ππ£π¦)+πππ§(ππ£π§)=0 (continuity equation)
- π·ππ·π‘+πβ.π=0 (continuity equation)
- πΉ1βπΉ2=π2βπ1π‘=ππ£2βππ£1π‘=ππ(π£2βπ£1)
- πΉ=ππ(π£+π’)[(π£+π’)βπ’]=ππ(π£+π’)π£(Jet propulsion moving withΒ π’Β velocity)
- π1ππ+π£122π+π§1=π2ππ+π£222π+π§2
- ππππ¦=ππππ₯andΒ ππ2π£ππ¦2=ππππ₯
- π=βππππ₯. π2 andΒ π=πΎπ€. βπΏπΏ.π2
- π£=14π. (βππππ₯).(π 2βπ2)=π£πππ₯.[1β(ππ )2]
- π1βπ2=32πππΏπ·2=128πππΏππ·4
- π=64ππππ·=64π π
- π£=π£πππ₯. (1βππ )17β (Turbulent)
- βπΏ=ππΏπ£22ππ·
- πΏπ·5=πΏ1π·15+πΏ2π·25+πΏ3π·35 (Compound pipe)
- πππΎββ=ππ πΎ+πππ£22ππ·+0.5π£22π+π£22πΒ andΒ π»=ππΏπ£22ππ·+1.5π£22πΒ (Siphon)
- πΏβ=β«(1βπ£π) β0ππ¦
- π=β«π£π(1βπ£π) β0ππ¦
- πΏπΈ=β«π£π(1βπ£2π2) β0ππ¦
- Blasius boundary layer thicknessΒ πΏπ₯=5βπ ππ₯
- Displacement thicknessΒ πΏβπ₯=1.729βπ ππ₯
- Momentum thicknessΒ ππ₯=0.664βπ ππ₯
- ππ,π₯=0.664βπ ππ₯andΒ ππ₯=ππ,π₯ππ22
- Drag force=Β πΆπππ΄π22Β ππππΉπ΄=π0=πΆπππ22,Β πΆπ=1.328βπ ππΏ
- πΏβ²=11.6Β πβππ/π=11.6ππ£β(Laminar sub layer)
- βΜ =xΜ +IGAxΜ andΒ βΜ =π₯Μ +πΌπΊπ΄π₯Μ . π ππ2π
- πΊπ=πΌπβπ΅πΊ
- Q= 815πΆπ. β2π.tanπ/2Β π»52β
- π£=βππ₯Β²2π¦
- π=Cdπ1π2βπ12βπ22. β2gh andΒ β=π₯(π ππ πβ1)
- π=π1βπ2
- πβ ππ₯=βπ£π₯andΒ πβ ππ¦=βπ£π¦
- ππππ₯=π£π¦andΒ ππππ¦=βπ£π₯
- (π π)π=πππππΏπππ=1
- (πΉπ)π=π£πβπππΏπ
- ππ₯=π£π₯.ππ£π₯ππ₯Β +π£π¦Β .ππ£π₯ππ¦Β +π£π§Β .ππ£π₯ππ§Β +ππ£π₯ππ‘
- ππ¦=π£π₯.ππ£π¦ππ₯Β +π£π¦Β .ππ£π¦ππ¦Β +π£π§Β .ππ£π¦ππ§Β +ππ£π¦ππ‘
- ππ§=π£π₯.ππ£π§ππ₯Β +π£π¦Β .ππ£π§ππ¦Β +π£π§Β .ππ£π§ππ§Β +ππ£π§ππ‘
- π=12Β ππ’πππ£=12(βΓπ£)
- Vorticity =2π
- Circulation =π£πππ‘ππππ‘π¦Γππππ
- πΉ=πππ£2
- Q1=Q2[1+cosΞΈ]Β πππQ2=Q2[1βcosΞΈ] (ΞΈ is with plate)
- Ns=NβQH3/4, Ns=NβPH5/4
- π2π=π΄3π
- πΉ=π£βπ. π΄π
- π¦π3=2π¦12π¦22π¦1+π¦2 andΒ πΈ=Β π¦12+π¦1π¦2+π¦22π¦1+π¦2
- ππ¦ππ₯=π πβπ π1βπ2πππ΄3
- π1+π1 =Β π2+π2 (specific force=pressure force+momentum per sec)
- π¦2π¦1[1+π¦2π¦1] = 2π2ππ¦13 (sequent depths for rectangular channel)
- πΈ=(π¦2βπ¦1)34π¦1π¦2 (Energy loss in jump)