Looking at your requirement, we are sharing with you some of Important Civil EngineeringΒ Formulas & Shortcuts for Competitive Exam as well as Engineering exam.
Strength of material
- πΒ =Β πΏππ‘ππππΒ π π‘πππππΏπππππ‘π’πππππΒ π π‘ππππ
- ππ₯Β =ππ₯πΈΒ βπππ¦πΈΒ βΒ πππ§πΈ
- ππ¦=Β ππ¦πΈΒ βΒ πππ₯πΈΒ βΒ πππ§πΈ
- ππ§=Β ππ§πΈΒ βΒ πππ₯πΈΒ βΒ πππ¦πΈ
- πΊ=Β πΈ2(1+π)
- πΎ=πΈΒ 3(1β2π)
- ππΌ=ππ¦=πΈπ
- πΒ =VQIb
- ππ½Β =Β ππΒ =Β πΊππΏ
- ππΒ = 12[π+βπ2+π2]
- ππ= βπ2+π2
- π= 3π€π2πππ‘2 andΒ πΏΒ =Β ππ24πΈπ‘Β (Leaf spring)
- πΏΒ = 64ππ 3ππΊπ4 (Helical spring)
- ππ=ππ₯+ππ¦2+ππ₯βππ¦2cos2π+πsin2π
- ππ‘=β(ππ₯βππ¦2)sin2π+πcos2π
- π1=ππ₯+ππ¦2+β(ππ₯βππ¦2)2+π2
- π3=ππ₯+ππ¦2ββ(ππ₯βππ¦2)2+π2
- π=Β π2πΈπΌπ2 (hinged and hinged)) ,πΒ =Β π2πΈπΌ4π2 (fixed and free)
- πΒ = 4π2πΈπΌπ2 (Fixed and fixed) ,πΒ = 2π2πΈπΌπ2
- π=Β ππ.π΄1+πΌ(πππΎ)2 whereΒ πΌ=πππ2πΈΒ is Rankineβs constant
Structural analysisΒ
- πΜ π΄π΅=βπππ2π2 andΒ πΜ π΄π΅=ππ2ππ2 (Point load)
- πΜ π΄π΅=βπ€π212 andΒ πΜ π΄π΅=π€π212 (udl)
- πΜ π΄π΅=βπ€π230 andΒ πΜ π΄π΅=π€π220 (uvl from left to right increase)
- πΜ π΄π΅=πππ2(3πβπ) andΒ πΜ π΄π΅=πππ2(3πβπ) (clockwise moment)
- π=π2πΏ2π΄πΈΒ ,Β π=β«π22πΈπΌπΏ0Β ππ₯Β andΒ π=π2πΏ2πΊπ½
- π=1.2β«π22πΊπ΄πΏ0ππ₯Β (rectangular beam)
- π»= β«ππ π¦πΈπΌΒ ππ₯+βπ‘πβπΏπ0β«π¦2ππ₯πΈπΌπ0 (two hinged arch)
- H=π€π28πΒ (cable with udl) and Length of cableΒ πΏ=Β π+83π2π
- ππ΄π΅=πΜ π΄π΅+2πΈπΌπΏ(2ππ΄+ππ΅β3ΞπΏ) , right support sinks by Ξ
- ππ΅π΄=πΜ π΅π΄+2πΈπΌπΏ(2ππ΅+ππ΄β3ΞπΏ), right support sinks by Ξ
- ππ΄Β π1+2ππ΅(π1+π2)+ππΆπ2=β6π1π₯1π1β6π2π₯2π2
- πΏ=Ξ£πππΏπ΄πΈ
- π=βΞ£πππΏπ΄πΈΞ£π2πΏπ΄πΈ+πΏ0π΄0πΈ0 andΒ π=βΞ£(ππΏπ΄πΈ+πΏπΌπ‘)πΞ£π2πΏπ΄πΈ+πΏ0π΄0πΈ0
- πππΒ =πππππΒ ππ‘Β πΒ ππ’πΒ π‘πΒ πππ πππππππππ‘Β ππ‘Β π,Β πΏππ=πππ πππππππππ‘Β ππ‘Β πΒ ππ’πΒ π‘πΒ πππππΒ ππ‘Β π
- Far end fixed, Transverse displacement,Β πΏ=πΏ312πΈπΌΒ andΒ π=12πΈπΌπΏ3
- Far end hinged, Transverse displacement,Β πΏ=πΏ33πΈπΌΒ andΒ π=3πΈπΌπΏ3
RCCΒ
- ππ=πππ+1.65Β π
- πΈπ=5000 βπππΒ andΒ πππ=0.7 βπππ
- ππ π‘=0.002+0.87Β ππ¦πΈπ
- πΈπ =2Γ 105Β πππΒ ,Β π=2803ππππ
- ππ=π06+ππ€+6π·πΒ for T-beams.
- ππ=π012+ππ€+3π·πΒ for L-beams.
- π0π0π+4+ππ€Β β€πΒ for isolated T-beams.
- 0.5π0π0π+4 +ππ€Β β€πΒ for isolated L-beams.
- π₯π’π=0.87Β ππ¦.Β π΄π π‘0.36Β πππΒ ππΒ andΒ π₯π’,πππ₯π= 0.00350.0055+0.87Β ππ¦πΈπ
- ππ’=0.87Β ππ¦.π΄π π‘Β (πβ0.42Β π₯π’) forΒ π₯π’Β β€π₯π’,max
- ππ’=0.36Β πππ.π.π₯π’,πππ₯(πβ0.42Β π₯π’,πππ₯)
- π₯π’,πππ₯π= 0.87Β ππ¦0.36Β πππΒ (ππ‘,πππΒ 100)
- ππ’=0.87Β ππ¦Β π΄π π‘Β (πβππ¦Β π΄π π‘πππΒ π)
- π¦π=0.15Β π₯π’+0.65Β π·πΒ whenΒ π·ππ>0.2
- 0.87Β ππ¦Β (π΄π π‘βπ΄π π‘,π)=(ππ πβ0.447Β πππ).π΄π π
- ππ’=ππ’,πΒ + 0.87Β ππ¦.(π΄π π‘βπ΄π π‘,π) (πβπβ²)
- π΄π π‘Β ππ= 0.85ππ¦Β (minimum tension reinforcement)
- π΄π π‘,πππ=0.12 % ofΒ π΄πΒ forΒ πΉπ-415 and 0.15 % ofΒ π΄πΒ forΒ πΉπ-250. (slabs)
- π΄π π‘,πππ₯=4%Β ππΒ π΄πΒ (Beams) ,π΄π π,πππ₯=4%Β ππΒ π΄πΒ (Beams)
- (ππ)πππ₯=(ππ)πππ ππππ‘Β ππ
- (ππ)πππ ππ=7 for cantilever, 20 for SS and 26 for continuous beams. If span is more than 10 m, multiply above values with 10/span for SS and continuous beams.
- πΏπ=ππ β 4πππΒ , multiplyΒ πππΒ value with 1.6 for deformed bars and 1.25 for bars in compression.
- ππ’ππ’+πΏ0β₯πΏπΒ and 1.3ππ’ππ’+πΏ0β₯πΏπΒ (If confinement exists)
- ππ£=ππ’ππΒ ,Β ππ’,πππ‘=ππ’+ππtanπ½
- ππ’π =0.87Β ππ¦Β π΄π π£Β ππ π£
- π΄π π£πΒ π π£β₯0.40.87Β ππ¦Β (minimum shear reinforcement)
- π π£β€0.75Β πΒ πππΒ 300Β ππΒ for vertical stirrups.
- ππ=ππ’+1.6ππ’πΒ andΒ ππ=ππ’+ππ’1.7(1+π·π)
- ππβ€35 for ss and 40 for continuous slabs for Fe-250. For Fe-415 multiply above values with 0.8
- ππ2=ππ Β 0.25βπππΒ ,Β ππ =0.5+π½πβ€1.0 andΒ π½π=ππ·
- ππ₯,πππ=π500+π30 ,20Β ππΒ whichever is greater.
- ππ¦,πππ=π500+π30 ,20Β ππΒ whichever is greater.
- ππ’=0.4Β πππΒ π΄π+0.67Β ππ¦π΄π π
- πβππβ₯0.36(π΄ππ΄πβ1)πππππ¦Β ,Β ππ=πβ2πΒ andΒ ππ=ππββ
- πΆπ=1.25βππ48π
36.Β πππ,πππ₯=0.45Β πππβπ΄1π΄2 , 1<βπ΄1π΄2β€2 ,Β π΄1=Largest frustum of a pyramid with side slopes 1 in 2,Β π΄2=loaded area of column base